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Self-interaction effects on screening in three-dimensional QED
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Abstract. We have shown that self-interaction effects in massive quantum electrodynamics can
lead to the formation of bound states of quark–antiquark pairs. A current–current fermion coupling
term is introduced, which induces a well in the potential energy profile. Explicit expressions of the
effective potential and renormalized parameters are provided.

In a recent letter [1], Abdalla and Banerjee have discussed the confinement and screening
problems in three-dimensional QED. They have studied the inter-‘quark’ potential between two
static test charges in a theory of dynamical fermions of massm coupled to electromagnetism.
Their results indicate that for small separation, the quantum potential tends to the classical
logarithmic Coulomb potential. However, for large distance the potential tends to zero. This
shows quite conclusively the confining and screening nature of the potential. These results
also corroborate the two-dimensional results [2] nicely.

This paper is aimed at studying the stability of the above scenario, in three dimensions,
in the presence of self-interaction among the fermions. In particular, we have chosen the well
studied current–current Thirring interaction. When the Thirring couplingg is positive, the
new model shows a marked departure of a qualitative nature from [1] in the short distance
regime. In the potential profile, there appears more structure, in the form of awell, indicating
a strong repulsion below some critical distance. This might lead to stable bound states of
the quark–antiquark pair. The large distance behaviour shows the expected screening. For
negativeg, nothing of the above dramatic nature occurs, albeit the potential decreases more
sharply for short distance.

We formulate the problem along the lines of [1]. The fermion modes in the gauged Thirring
model are integrated out to incorporate quantum (fermion loop) effects in the subsequent
classical analysis. This bosonization is done in the large-m approximation. The auxiliary field
Bµ, introduced to linearize the Thirring term, is integrated next, resulting in a generalized
Maxwell–Chern–Simons gauge theory [3, 4]. The theory now contains two independent
parameters,m andg. In order to gain further insight, we expand the results in powers of
g and keep terms up to O(1/m, g, g2, g/m). Surprisingly, the terms linear ing do not alter the
results very much whereas the effect of the higher-order corrections is substantial, as mentioned
earlier. This is our main result.

The ideas of screening and confinement play a central role in gauge theory. The
computational hurdles in four dimensions compel us to study the lower-dimensional models.
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But one has to extract results which are not artefacts of low dimensionality and which can be
carried on to the real world. Previously, in two-dimensional QED, [2] results were obtained
indicating screening and confinement for massless and massive fermions, respectively. QCD
was studied by [5], where apart from the dynamical fermion mass, the representations of
the dynamical fermions and test charges became important. The problems regardingθ -
vacuum, screening, confinement and chiral condensate in two- and three-dimensional QCD
were discussed in [6].

The parent model is

LF = ψ̄ iγ µ(∂µ − ieAµ)ψ −mψ̄ψ +
g

2
|ψ̄γ µψ |2 − pe

2

4
|Aµν |2 +

qe2

2
εµνλA

µAνλ + JµA
µ.

(1)

HereAµν = ∂µAν − ∂νAµ, Jµ is an external conserved current and conventionally one takes
p = 1/e2, q = µ/(2e2). We have considered them arbitrary to keep track of them. The above
model is rewritten with the auxiliary fieldBµ as

LF = ψ̄ iγ µ(∂µ − ieAµ − iBµ)ψ − 1

2g
|Bµ|2 −mψ̄ψ − pe

2

4
|Aµν |2

+
qe2

2
εµνλA

µAνλ + JµA
µ. (2)

The bosonized Lagrangian to O(1/m) is

LB = −a
4
|Bµν |2 +

α

2
εµνλB

µBνλ − 1

2g
|Bµ|2 − (a + p)

4
e2|Aµν |2

+
(α + q)

2
e2εµνλA

µAνλ − ae
2
AµνB

µν + eαεµνλB
µAνλ + JµA

µ (3)

whereα = −1/(8π) anda = −1/(6πm). Hence we define the effective action as

Z(Aµ,Bµ) =
∫
DAµDBµδ(∂µAµ) exp

(
− i

∫
d3xLB

)
. (4)

Note that a Lorentz gauge condition is introduced in the measure since the theory has aU(1)
gauge invariance in theAµ field.

The above theory is quadratic inBµ and after a formal integration of it, we arrive at the
following effective action consisting of the gauge fieldAµ and the external current:

Z(Aµ) =
∫
DAµδ(∂µAµ) exp(−i/4)

∫
d3x

[
2e2Aµ

4α2g − (a + p) + a2g∂2

(ag∂2 − 1)2 + 4α2g2∂2

×(∂2gµν − ∂µ∂ν)Aν
+e2Aµ

−4(α + q) + 8g(1− α)∂2(2α2g − a + a2g∂2)

(ag∂2 − 1)2 + 4α2g2∂2
× εµνλ∂νAλ − 4JµA

µ

]
.

(5)

This is a generalized Maxwell–Chern–Simons-type theory [3,4,7]. Forg = q = 0, this action
reduces to the one in [1]. From theAµ equation it follows that∂µAµ = 0. Let us from now
on work with the truncated version of this model keeping only terms of O(a, g, g2, ag). The
Aµ equation of motion in the Lorentz gauge is

Pεµνλ∂
νAλ +Q∂2Aµ + Jµ = 0

P = 2e2[(α + q)− 8(2α2g2 − ag)(1 +q)∂2]
Q = −e2[(4α2g − a − p) + 2p(2α2g2 − ag)∂2].

(6)
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In order to solve this equation forAµ in the static limit, let us define thecurl of Aµ as in [1],

Aµ = −εµνλ∂νAλ.
This allows us to rewrite (6) as

Pεαβµ∂βAµ +Q∂2Aα = εαβµ∂βJµ.
The operator acting onAµ can be formally inverted to yield

Aσ = P

P 2 +Q2∂2
Jσ +

Q

P 2 +Q2∂2
εσµν∂

µJ ν

which reduces to [1](
∂2 +

(
P

Q

)2
)
(−εµνλ∂νAλ) = P

Q2
Jµ +

1

Q
εµνλ∂

νJ λ. (7)

Forµ = 2 in the static case, (7) reduces to(
∂2 +

(
P

Q

)2
)
A0 = 1

Q
J0. (8)

This equation is inverted to getA0. We now proceed exactly as in [1]. The potential energy
between two external static charges, (emerging fromJ0), a distanceL apart, is

V (L) = −(Lq − L0) = −q[A0(x
1 = −L/2, x2 = 0)− A0(x

1 = L/2, x2 = 0)]. (9)

The subscriptq denotes the presence of the external chargeq. It is worthwhile to point out
that the quantum corrections to this classical (Coulomb) energy are incorporated at the one-
loop level of the underlying fermions since we are using the effective action obtained by first
integrating the fermions and subsequently the auxiliary fieldBµ. Only one-loop corrections
are present since the fermion determinant was computed by treating the gauge fieldAµ as
external.

Solving theAµ-equation forA0 we get

A0(x) = q1[1(x1 +L/2, x2;N)−1(x1− L/2, x2;N)]
+q2∂i∂i [1(x

1 +L/2, x2;N)−1(x1− L/2, x2;N)]. (10)

1(x,m) is the two-dimensional Euclidean Feynman propagator given by the modified Bessel
function

1(x,m) = 1/(2π)K0

(
m
√
(x1)2 + (x2)2

)
.

Hereq1 andq2 andN are related to the external chargeq and the fermion massm. Once again,
for g = q = 0, we obtain the results of [1]. The interesting term is the latter one in (8) which
disappears ifonlyO(a, g) terms are kept. Because of the derivative operator, it radically alters
the functional form ofA0, even though its strengthq2 is much less thanq1. For small separation
L, K0(L) ≈ ln(L) and the second term≈1/L2, which competes and finally dominates over
the first term. Hence the higher corrections appearing from the self-interaction of the fermions
tend to stabilize the charge system. This is the conclusion mentioned at the beginning. Finally,
the potential energy function is expressed in terms of dimensionless variablesM ≡ e2/m,
G ≡ ge2, θ ≡ µ/e2,X = e2L as

VT h = −q
2

π

(1 + t)

1−M/(6π)K0

[
(1 +u)X

4π(1−M/(6π))
]

+
q2

π

2[G2/(32π2) +GM/(6π)]

1−M/(3π) (∂X)
2K0

[
(1 +u)X

4π(1−M/(6π))
]
. (11)
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Figure 1. The potential functionsVcl , VAB and V ±T h
(G = ±0.1) are plotted againstX.

Figure 2. The potential functionsVcl , VAB and V ±T h
(G = ±50) are plotted againstX. Only terms linear
in G are considered inV ±T h.

This expression is to be compared withVclassicalandVAB in [1]

VCl = q2

π
ln(X)

VAB = −q
2

π

1

1−M/(6π)K0

[
X

4π(1−M/(6π))
]
.

The correction terms in (11) are

u = 4

1−M/(2π)
[
G

64π2
+G2

(
− 1

32π3
− θ

128π3
+

θ

8π2
− 3θ2

512π3

)
−MG

(
1

96π3
− 1

6π2
+

θ

24π2
− 2θ

3π
− θ2

4π

)]
t = 4

1−M/(2π)
[
G

64π2
+G2

(
− 1

1024π4
− 3

512π3
− θ

64π3
+

θ

4π2
+

3θ2

32π2

)
−GM

(
1

64π3
+

1

3π2
+

θ

12π2
− 4θ

3π
− θ2

2π

)]
.

This constitues our main result.
Notice thatθ does not play any significant role in the present context and so we putθ = 0.

In figure 1, forM = 0.1,G = ±0.1,VCl, VAB andV ±T h are plotted. For this case, the potential
well in V +

T h(G = +0.1) is atX ≈ 2
√
G2/(32π2) +GM/(6π) ≈ 0.046 and forX < 0.003,

V +
T h becomes positive.V −T h(G = −0.1) shows a sharper descent at short distance. Figure 2

shows only O(G) corrections to theVAB result. The fact thatV ±T h ≈ VAB up to O(G) is quite
insensitive for a wide range of values ofG andM. Here, an unrealistic valueG = ±50 is
chosen just to separate theV ±T h andV ±AB lines as well as to stress the stability of this formulation
up to O(M,G). The shift ofV ±T h with respect toVAB in the upward or downward direction is
dictated by the sign ofG.

Up to O(M,G) the effective mass of the gauge particleAµ and the renormalized charge
q2 are

MTh = P

Q
≈ e2/(4π)

1−M/(6π)
(

1− G

2π

)
= MAB

(
1− G

2π

)
(q2)T h ≈ q2

1−M/(6π)
(

1 +
G

16π2

)
= (q2)AB

(
1 +

G

16π2

)
.
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Higher-order momentum dependent terms have been left out.
Let us summarize our results. The potential energy between the external charges at large

distance is screened as the gauge particles aquire mass from the Chern–Simons term. Without
the Thirring interaction, at short distance, one gets a decreasing negative potential, logarithmic
in nature. The positive Thirring coupling term introduces a sort of centrifugal barrier in the
effective potential, which leads to the potential well formation. Expressing the centrifugal
term as(angular momentum)2/(2ML2) shows clearly thatonly the Thirring term contributes
to the correction in the angular momentum of the ‘bound state’. The physical reason is the
following. From (2), notice thatBµ/g is identified as the fermion current [4]. Thevector
natureof the interaction leads to the derivative term upon integration, which subsequently
changes the angular momentum. Estimates of effective mass of the state can be obtained from
harmonic oscillator excitations around the well minimum.
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